Жанр: Информационные технологии, № 714 в Программирование
Теги: #анализ данных, #статистический анализ, #big data, #машинное обучение, #data mining
Книга представляет собой доступно изложенное введение в статистическое обучение – незаменимый набор инструментов, позволяющих извлечь полезную информацию из больших и сложных наборов данных, которые начали возникать в последние 20 лет в таких областях, как биология, экономика, маркетинг, физика и др. В этой книге описаны одни из наиболее важных методов моделирования и прогнозирования, а также примеры их практического применения. Рассмотренные темы включают линейную регрессию, классификацию, создание повторных выборок, регуляризацию, деревья решений, машины опорных векторов, кластеризацию и др. Описание этих методов сопровождается многочисленными иллюстрациями и практическими примерами. Поскольку цель этого учебника заключается в продвижении методов статистического обучения среди практикующих академических исследователей и промышленных аналитиков, каждая глава включает примеры практической реализации соответствующих методов с помощью R – чрезвычайно популярной среды статистических вычислений с открытым кодом. Издание рассчитано на неспециалистов, которые хотели бы применять современные методы статистического обучения для анализа своих данных. Предполагается, что читатели ранее прослушали лишь курс по линейной регрессии и не обладают знаниями матричной алгебры.
Произведение относится к жанру Информационные технологии. Оно было опубликовано в 2013 году издательством ДМК-Пресс. На нашем сайте можно скачать книгу "Введение в статистическое обучение с примерами на языке R" в формате pdf или читать онлайн. Рейтинг книги составляет 2.38 из 5. Здесь так же можно перед прочтением обратиться к отзывам читателей, уже знакомых с книгой, и узнать их мнение. В интернет-магазине нашего партнера вы можете купить и прочитать книгу в бумажном варианте.